This is one stop global knowledge base where you can learn about all the products, solutions and support features.
Fundamentally, JSX just provides syntactic sugar for the
React.createElement(component, props, ...children)
function. The JSX code:
<MyButton color="blue" shadowSize={2}>
Click Me
</MyButton>
compiles into:
React.createElement(
MyButton,
{color: 'blue', shadowSize: 2},
'Click Me'
)
You can also use the self-closing form of the tag if there are no children. So:
<div className="sidebar" />
compiles into:
React.createElement(
'div',
{className: 'sidebar'}
)
If you want to test out how some specific JSX is converted into JavaScript, you can try out the online Babel compiler.
The first part of a JSX tag determines the type of the React element.
Capitalized types indicate that the JSX tag is referring to a React component. These tags get compiled into a direct reference to the named variable, so if you use the JSX
<Foo />
expression,
Foo
must be in scope.
Since JSX compiles into calls to
React.createElement
, the
React
library must also always be in scope from your JSX code.
For example, both of the imports are necessary in this code, even though
React
and
CustomButton
are not directly referenced from JavaScript:
import React from 'react';import CustomButton from './CustomButton';
function WarningButton() {
// return React.createElement(CustomButton, {color: 'red'}, null); return <CustomButton color="red" />;
}
If you don’t use a JavaScript bundler and loaded React from a
<script>
tag, it is already in scope as the
React
global.
You can also refer to a React component using dot-notation from within JSX. This is convenient if you have a single module that exports many React components. For example, if
MyComponents.DatePicker
is a component, you can use it directly from JSX with:
import React from 'react';
const MyComponents = {
DatePicker: function DatePicker(props) {
return <div>Imagine a {props.color} datepicker here.</div>;
}
}
function BlueDatePicker() {
return <MyComponents.DatePicker color="blue" />;}
When an element type starts with a lowercase letter, it refers to a built-in component like
<div>
or
<span>
and results in a string
'div'
or
'span'
passed to
React.createElement
. Types that start with a capital letter like
<Foo />
compile to
React.createElement(Foo)
and correspond to a component defined or imported in your JavaScript file.
We recommend naming components with a capital letter. If you do have a component that starts with a lowercase letter, assign it to a capitalized variable before using it in JSX.
For example, this code will not run as expected:
import React from 'react';
// Wrong! This is a component and should have been capitalized:function hello(props) { // Correct! This use of <div> is legitimate because div is a valid HTML tag:
return <div>Hello {props.toWhat}</div>;
}
function HelloWorld() {
// Wrong! React thinks <hello /> is an HTML tag because it's not capitalized: return <hello toWhat="World" />;}
To fix this, we will rename
hello
to
Hello
and use
<Hello />
when referring to it:
import React from 'react';
// Correct! This is a component and should be capitalized:function Hello(props) { // Correct! This use of <div> is legitimate because div is a valid HTML tag:
return <div>Hello {props.toWhat}</div>;
}
function HelloWorld() {
// Correct! React knows <Hello /> is a component because it's capitalized. return <Hello toWhat="World" />;}
You cannot use a general expression as the React element type. If you do want to use a general expression to indicate the type of the element, just assign it to a capitalized variable first. This often comes up when you want to render a different component based on a prop:
import React from 'react';
import { PhotoStory, VideoStory } from './stories';
const components = {
photo: PhotoStory,
video: VideoStory
};
function Story(props) {
// Wrong! JSX type can't be an expression. return <components[props.storyType] story={props.story} />;}
To fix this, we will assign the type to a capitalized variable first:
import React from 'react';
import { PhotoStory, VideoStory } from './stories';
const components = {
photo: PhotoStory,
video: VideoStory
};
function Story(props) {
// Correct! JSX type can be a capitalized variable. const SpecificStory = components[props.storyType]; return <SpecificStory story={props.story} />;}
There are several different ways to specify props in JSX.
You can pass any JavaScript expression as a prop, by surrounding it with
{}
. For example, in this JSX:
<MyComponent foo={1 + 2 + 3 + 4} />
For
MyComponent
, the value of
props.foo
will be
10
because the expression
1 + 2 + 3 + 4
gets evaluated.
if
statements and
for
loops are not expressions in JavaScript, so they can’t be used in JSX directly. Instead, you can put these in the surrounding code. For example:
function NumberDescriber(props) {
let description;
if (props.number % 2 == 0) { description = <strong>even</strong>; } else { description = <i>odd</i>; } return <div>{props.number} is an {description} number</div>;
}
You can learn more about conditional rendering and loops in the corresponding sections.
You can pass a string literal as a prop. These two JSX expressions are equivalent:
<MyComponent message="hello world" />
<MyComponent message={'hello world'} />
When you pass a string literal, its value is HTML-unescaped. So these two JSX expressions are equivalent:
<MyComponent message="<3" />
<MyComponent message={'<3'} />
This behavior is usually not relevant. It’s only mentioned here for completeness.
If you pass no value for a prop, it defaults to
true
. These two JSX expressions are equivalent:
<MyTextBox autocomplete />
<MyTextBox autocomplete={true} />
In general, we don’t recommend
not
passing a value for a prop, because it can be confused with the ES6 object shorthand
{foo}
which is short for
{foo: foo}
rather than
{foo: true}
. This behavior is just there so that it matches the behavior of HTML.
If you already have
props
as an object, and you want to pass it in JSX, you can use
...
as a “spread” syntax to pass the whole props object. These two components are equivalent:
function App1() {
return <Greeting firstName="Ben" lastName="Hector" />;
}
function App2() {
const props = {firstName: 'Ben', lastName: 'Hector'};
return <Greeting {...props} />;}
You can also pick specific props that your component will consume while passing all other props using the spread syntax.
const Button = props => {
const { kind, ...other } = props; const className = kind === "primary" ? "PrimaryButton" : "SecondaryButton";
return <button className={className} {...other} />;
};
const App = () => {
return (
<div>
<Button kind="primary" onClick={() => console.log("clicked!")}>
Hello World!
</Button>
</div>
);
};
In the example above, the
kind
prop is safely consumed and
is not
passed on to the
<button>
element in the DOM.
All other props are passed via the
...other
object making this component really flexible. You can see that it passes an
onClick
and
children
props.
Spread attributes can be useful but they also make it easy to pass unnecessary props to components that don’t care about them or to pass invalid HTML attributes to the DOM. We recommend using this syntax sparingly.
In JSX expressions that contain both an opening tag and a closing tag, the content between those tags is passed as a special prop:
props.children
. There are several different ways to pass children:
You can put a string between the opening and closing tags and
props.children
will just be that string. This is useful for many of the built-in HTML elements. For example:
<MyComponent>Hello world!</MyComponent>
This is valid JSX, and
props.children
in
MyComponent
will simply be the string
"Hello world!"
. HTML is unescaped, so you can generally write JSX just like you would write HTML in this way:
<div>This is valid HTML & JSX at the same time.</div>
JSX removes whitespace at the beginning and ending of a line. It also removes blank lines. New lines adjacent to tags are removed; new lines that occur in the middle of string literals are condensed into a single space. So these all render to the same thing:
<div>Hello World</div>
<div>
Hello World
</div>
<div>
Hello
World
</div>
<div>
Hello World
</div>
You can provide more JSX elements as the children. This is useful for displaying nested components:
<MyContainer>
<MyFirstComponent />
<MySecondComponent />
</MyContainer>
You can mix together different types of children, so you can use string literals together with JSX children. This is another way in which JSX is like HTML, so that this is both valid JSX and valid HTML:
<div>
Here is a list:
<ul>
<li>Item 1</li>
<li>Item 2</li>
</ul>
</div>
A React component can also return an array of elements:
render() {
// No need to wrap list items in an extra element!
return [
// Don't forget the keys :)
<li key="A">First item</li>,
<li key="B">Second item</li>,
<li key="C">Third item</li>,
];
}
You can pass any JavaScript expression as children, by enclosing it within
{}
. For example, these expressions are equivalent:
<MyComponent>foo</MyComponent>
<MyComponent>{'foo'}</MyComponent>
This is often useful for rendering a list of JSX expressions of arbitrary length. For example, this renders an HTML list:
function Item(props) {
return <li>{props.message}</li>;}
function TodoList() {
const todos = ['finish doc', 'submit pr', 'nag dan to review'];
return (
<ul>
{todos.map((message) => <Item key={message} message={message} />)} </ul>
);
}
JavaScript expressions can be mixed with other types of children. This is often useful in lieu of string templates:
function Hello(props) {
return <div>Hello {props.addressee}!</div>;}
Normally, JavaScript expressions inserted in JSX will evaluate to a string, a React element, or a list of those things. However,
props.children
works just like any other prop in that it can pass any sort of data, not just the sorts that React knows how to render. For example, if you have a custom component, you could have it take a callback as
props.children
:
// Calls the children callback numTimes to produce a repeated component
function Repeat(props) {
let items = [];
for (let i = 0; i < props.numTimes; i++) { items.push(props.children(i));
}
return <div>{items}</div>;
}
function ListOfTenThings() {
return (
<Repeat numTimes={10}>
{(index) => <div key={index}>This is item {index} in the list</div>} </Repeat>
);
}
Children passed to a custom component can be anything, as long as that component transforms them into something React can understand before rendering. This usage is not common, but it works if you want to stretch what JSX is capable of.
false
,
null
,
undefined
, and
true
are valid children. They simply don’t render. These JSX expressions will all render to the same thing:
<div />
<div></div>
<div>{false}</div>
<div>{null}</div>
<div>{undefined}</div>
<div>{true}</div>
This can be useful to conditionally render React elements. This JSX renders the
<Header />
component only if
showHeader
is
true
:
<div>
{showHeader && <Header />} <Content />
</div>
One caveat is that some “falsy” values, such as the
0
number, are still rendered by React. For example, this code will not behave as you might expect because
0
will be printed when
props.messages
is an empty array:
<div>
{props.messages.length && <MessageList messages={props.messages} />
}
</div>
To fix this, make sure that the expression before
&&
is always boolean:
<div>
{props.messages.length > 0 && <MessageList messages={props.messages} />
}
</div>
Conversely, if you want a value like
false
,
true
,
null
, or
undefined
to appear in the output, you have to convert it to a string first:
<div>
My JavaScript variable is {String(myVariable)}.</div>
Internally, React uses several clever techniques to minimize the number of costly DOM operations required to update the UI. For many applications, using React will lead to a fast user interface without doing much work to specifically optimize for performance. Nevertheless, there are several ways you can speed up your React application.
If you’re benchmarking or experiencing performance problems in your React apps, make sure you’re testing with the minified production build.
By default, React includes many helpful warnings. These warnings are very useful in development. However, they make React larger and slower so you should make sure to use the production version when you deploy the app.
If you aren’t sure whether your build process is set up correctly, you can check it by installing React Developer Tools for Chrome. If you visit a site with React in production mode, the icon will have a dark background:
If you visit a site with React in development mode, the icon will have a red background:
It is expected that you use the development mode when working on your app, and the production mode when deploying your app to the users.
You can find instructions for building your app for production below.
If your project is built with Create React App, run:
npm run build
This will create a production build of your app in the
build/
folder of your project.
Remember that this is only necessary before deploying to production. For normal development, use
npm start
.
We offer production-ready versions of React and React DOM as single files:
<script src="https://unpkg.com/react@18/umd/react.production.min.js"></script>
<script src="https://unpkg.com/react-dom@18/umd/react-dom.production.min.js"></script>
Remember that only React files ending with
.production.min.js
are suitable for production.
For the most efficient Brunch production build, install the
terser-brunch
plugin:
# If you use npm
npm install --save-dev terser-brunch
# If you use Yarn
yarn add --dev terser-brunch
Then, to create a production build, add the
-p
flag to the
build
command:
brunch build -p
Remember that you only need to do this for production builds. You shouldn’t pass the
-p
flag or apply this plugin in development, because it will hide useful React warnings and make the builds much slower.
For the most efficient Browserify production build, install a few plugins:
# If you use npm
npm install --save-dev envify terser uglifyify
# If you use Yarn
yarn add --dev envify terser uglifyify
To create a production build, make sure that you add these transforms (the order matters) :
envify
transform ensures the right build environment is set. Make it global (
-g
).
uglifyify
transform removes development imports. Make it global too (
-g
).
terser
for mangling (read why).
For example:
browserify ./index.js \
-g [ envify --NODE_ENV production ] \
-g uglifyify \
| terser --compress --mangle > ./bundle.js
Remember that you only need to do this for production builds. You shouldn’t apply these plugins in development because they will hide useful React warnings, and make the builds much slower.
For the most efficient Rollup production build, install a few plugins:
# If you use npm
npm install --save-dev rollup-plugin-commonjs rollup-plugin-replace rollup-plugin-terser
# If you use Yarn
yarn add --dev rollup-plugin-commonjs rollup-plugin-replace rollup-plugin-terser
To create a production build, make sure that you add these plugins (the order matters) :
replace
plugin ensures the right build environment is set.
commonjs
plugin provides support for CommonJS in Rollup.
terser
plugin compresses and mangles the final bundle.
plugins: [
// ...
require('rollup-plugin-replace')({
'process.env.NODE_ENV': JSON.stringify('production')
}),
require('rollup-plugin-commonjs')(),
require('rollup-plugin-terser')(),
// ...
]
For a complete setup example see this gist.
Remember that you only need to do this for production builds. You shouldn’t apply the
terser
plugin or the
replace
plugin with
'production'
value in development because they will hide useful React warnings, and make the builds much slower.
Note:
If you’re using Create React App, please follow the instructions above.
This section is only relevant if you configure webpack directly.
Webpack v4+ will minify your code by default in production mode.
const TerserPlugin = require('terser-webpack-plugin');
module.exports = {
mode: 'production',
optimization: {
minimizer: [new TerserPlugin({ /* additional options here */ })],
},
};
You can learn more about this in webpack documentation.
Remember that you only need to do this for production builds. You shouldn’t apply
TerserPlugin
in development because it will hide useful React warnings, and make the builds much slower.
react-dom
16.5+ and
react-native
0.57+ provide enhanced profiling capabilities in DEV mode with the React DevTools Profiler.
An overview of the Profiler can be found in the blog post “Introducing the React Profiler”.
A video walkthrough of the profiler is also available on YouTube.
If you haven’t yet installed the React DevTools, you can find them here:
Note
A production profiling bundle of
react-dom
is also available asreact-dom/profiling
.
Read more about how to use this bundle at fb.me/react-profiling
Note
Before React 17, we use the standard User Timing API to profile components with the chrome performance tab.
For a more detailed walkthrough, check out this article by Ben Schwarz.
If your application renders long lists of data (hundreds or thousands of rows), we recommend using a technique known as “windowing”. This technique only renders a small subset of your rows at any given time, and can dramatically reduce the time it takes to re-render the components as well as the number of DOM nodes created.
react-window and react-virtualized are popular windowing libraries. They provide several reusable components for displaying lists, grids, and tabular data. You can also create your own windowing component, like Twitter did, if you want something more tailored to your application’s specific use case.
React builds and maintains an internal representation of the rendered UI. It includes the React elements you return from your components. This representation lets React avoid creating DOM nodes and accessing existing ones beyond necessity, as that can be slower than operations on JavaScript objects. Sometimes it is referred to as a “virtual DOM”, but it works the same way on React Native.
When a component’s props or state change, React decides whether an actual DOM update is necessary by comparing the newly returned element with the previously rendered one. When they are not equal, React will update the DOM.
Even though React only updates the changed DOM nodes, re-rendering still takes some time. In many cases it’s not a problem, but if the slowdown is noticeable, you can speed all of this up by overriding the lifecycle function
shouldComponentUpdate
, which is triggered before the re-rendering process starts. The default implementation of this function returns
true
, leaving React to perform the update:
shouldComponentUpdate(nextProps, nextState) {
return true;
}
If you know that in some situations your component doesn’t need to update, you can return
false
from
shouldComponentUpdate
instead, to skip the whole rendering process, including calling
render()
on this component and below.
In most cases, instead of writing
shouldComponentUpdate()
by hand, you can inherit from
React.PureComponent
. It is equivalent to implementing
shouldComponentUpdate()
with a shallow comparison of current and previous props and state.
Here’s a subtree of components. For each one,
SCU
indicates what
shouldComponentUpdate
returned, and
vDOMEq
indicates whether the rendered React elements were equivalent. Finally, the circle’s color indicates whether the component had to be reconciled or not.
Since
shouldComponentUpdate
returned
false
for the subtree rooted at C2, React did not attempt to render C2, and thus didn’t even have to invoke
shouldComponentUpdate
on C4 and C5.
For C1 and C3,
shouldComponentUpdate
returned
true
, so React had to go down to the leaves and check them. For C6
shouldComponentUpdate
returned
true
, and since the rendered elements weren’t equivalent React had to update the DOM.
The last interesting case is C8. React had to render this component, but since the React elements it returned were equal to the previously rendered ones, it didn’t have to update the DOM.
Note that React only had to do DOM mutations for C6, which was inevitable. For C8, it bailed out by comparing the rendered React elements, and for C2’s subtree and C7, it didn’t even have to compare the elements as we bailed out on
shouldComponentUpdate
, and
render
was not called.
If the only way your component ever changes is when the
props.color
or the
state.count
variable changes, you could have
shouldComponentUpdate
check that:
class CounterButton extends React.Component {
constructor(props) {
super(props);
this.state = {count: 1};
}
shouldComponentUpdate(nextProps, nextState) {
if (this.props.color !== nextProps.color) {
return true;
}
if (this.state.count !== nextState.count) {
return true;
}
return false;
}
render() {
return (
<button
color={this.props.color}
onClick={() => this.setState(state => ({count: state.count + 1}))}>
Count: {this.state.count}
</button>
);
}
}
In this code,
shouldComponentUpdate
is just checking if there is any change in
props.color
or
state.count
. If those values don’t change, the component doesn’t update. If your component got more complex, you could use a similar pattern of doing a “shallow comparison” between all the fields of
props
and
state
to determine if the component should update. This pattern is common enough that React provides a helper to use this logic - just inherit from
React.PureComponent
. So this code is a simpler way to achieve the same thing:
class CounterButton extends React.PureComponent {
constructor(props) {
super(props);
this.state = {count: 1};
}
render() {
return (
<button
color={this.props.color}
onClick={() => this.setState(state => ({count: state.count + 1}))}>
Count: {this.state.count}
</button>
);
}
}
Most of the time, you can use
React.PureComponent
instead of writing your own
shouldComponentUpdate
. It only does a shallow comparison, so you can’t use it if the props or state may have been mutated in a way that a shallow comparison would miss.
This can be a problem with more complex data structures. For example, let’s say you want a
ListOfWords
component to render a comma-separated list of words, with a parent
WordAdder
component that lets you click a button to add a word to the list. This code does
not
work correctly:
class ListOfWords extends React.PureComponent {
render() {
return <div>{this.props.words.join(',')}</div>;
}
}
class WordAdder extends React.Component {
constructor(props) {
super(props);
this.state = {
words: ['marklar']
};
this.handleClick = this.handleClick.bind(this);
}
handleClick() {
// This section is bad style and causes a bug
const words = this.state.words;
words.push('marklar');
this.setState({words: words});
}
render() {
return (
<div>
<button onClick={this.handleClick} />
<ListOfWords words={this.state.words} />
</div>
);
}
}
The problem is that
PureComponent
will do a simple comparison between the old and new values of
this.props.words
. Since this code mutates the
words
array in the
handleClick
method of
WordAdder
, the old and new values of
this.props.words
will compare as equal, even though the actual words in the array have changed. The
ListOfWords
will thus not update even though it has new words that should be rendered.
The simplest way to avoid this problem is to avoid mutating values that you are using as props or state. For example, the
handleClick
method above could be rewritten using
concat
as:
handleClick() {
this.setState(state => ({
words: state.words.concat(['marklar'])
}));
}
ES6 supports a spread syntax for arrays which can make this easier. If you’re using Create React App, this syntax is available by default.
handleClick() {
this.setState(state => ({
words: [...state.words, 'marklar'],
}));
};
You can also rewrite code that mutates objects to avoid mutation, in a similar way. For example, let’s say we have an object named
colormap
and we want to write a function that changes
colormap.right
to be
'blue'
. We could write:
function updateColorMap(colormap) {
colormap.right = 'blue';
}
To write this without mutating the original object, we can use Object.assign method:
function updateColorMap(colormap) {
return Object.assign({}, colormap, {right: 'blue'});
}
updateColorMap
now returns a new object, rather than mutating the old one.
Object.assign
is in ES6 and requires a polyfill.
Object spread syntax makes it easier to update objects without mutation as well:
function updateColorMap(colormap) {
return {...colormap, right: 'blue'};
}
This feature was added to JavaScript in ES2018.
If you’re using Create React App, both
Object.assign
and the object spread syntax are available by default.
When you deal with deeply nested objects, updating them in an immutable way can feel convoluted. If you run into this problem, check out Immer or immutability-helper. These libraries let you write highly readable code without losing the benefits of immutability.
Portals provide a first-class way to render children into a DOM node that exists outside the DOM hierarchy of the parent component.
ReactDOM.createPortal(child, container)
The first argument (
child
) is any
renderable React child, such as an element, string, or fragment. The second argument (
container
) is a DOM element.
Normally, when you return an element from a component’s render method, it’s mounted into the DOM as a child of the nearest parent node:
render() {
// React mounts a new div and renders the children into it
return (
<div> {this.props.children}
</div> );
}
However, sometimes it’s useful to insert a child into a different location in the DOM:
render() {
// React does *not* create a new div. It renders the children into `domNode`.
// `domNode` is any valid DOM node, regardless of its location in the DOM.
return ReactDOM.createPortal(
this.props.children,
domNode );
}
A typical use case for portals is when a parent component has an
overflow: hidden
or
z-index
style, but you need the child to visually “break out” of its container. For example, dialogs, hovercards, and tooltips.
Note:
When working with portals, remember that managing keyboard focus becomes very important.
For modal dialogs, ensure that everyone can interact with them by following the WAI-ARIA Modal Authoring Practices.
Try it on CodePen
Even though a portal can be anywhere in the DOM tree, it behaves like a normal React child in every other way. Features like context work exactly the same regardless of whether the child is a portal, as the portal still exists in the React tree regardless of position in the DOM tree .
This includes event bubbling. An event fired from inside a portal will propagate to ancestors in the containing React tree , even if those elements are not ancestors in the DOM tree . Assuming the following HTML structure:
<html>
<body>
<div id="app-root"></div>
<div id="modal-root"></div>
</body>
</html>
A
Parent
component in
#app-root
would be able to catch an uncaught, bubbling event from the sibling node
#modal-root
.
// These two containers are siblings in the DOM
const appRoot = document.getElementById('app-root');
const modalRoot = document.getElementById('modal-root');
class Modal extends React.Component {
constructor(props) {
super(props);
this.el = document.createElement('div');
}
componentDidMount() {
// The portal element is inserted in the DOM tree after
// the Modal's children are mounted, meaning that children
// will be mounted on a detached DOM node. If a child
// component requires to be attached to the DOM tree
// immediately when mounted, for example to measure a
// DOM node, or uses 'autoFocus' in a descendant, add
// state to Modal and only render the children when Modal
// is inserted in the DOM tree.
modalRoot.appendChild(this.el);
}
componentWillUnmount() {
modalRoot.removeChild(this.el);
}
render() {
return ReactDOM.createPortal( this.props.children, this.el ); }
}
class Parent extends React.Component {
constructor(props) {
super(props);
this.state = {clicks: 0};
this.handleClick = this.handleClick.bind(this);
}
handleClick() { // This will fire when the button in Child is clicked, // updating Parent's state, even though button // is not direct descendant in the DOM. this.setState(state => ({ clicks: state.clicks + 1 })); }
render() {
return (
<div onClick={this.handleClick}> <p>Number of clicks: {this.state.clicks}</p>
<p>
Open up the browser DevTools
to observe that the button
is not a child of the div
with the onClick handler.
</p>
<Modal> <Child /> </Modal> </div>
);
}
}
function Child() {
// The click event on this button will bubble up to parent, // because there is no 'onClick' attribute defined return (
<div className="modal">
<button>Click</button> </div>
);
}
const root = ReactDOM.createRoot(appRoot);
root.render(<Parent />);
Try it on CodePen
Catching an event bubbling up from a portal in a parent component allows the development of more flexible abstractions that are not inherently reliant on portals. For example, if you render a
<Modal />
component, the parent can capture its events regardless of whether it’s implemented using portals.
The
Profiler
measures how often a React application renders and what the “cost” of rendering is.
Its purpose is to help identify parts of an application that are slow and may benefit from
optimizations such as memoization.
Note:
Profiling adds some additional overhead, so it is disabled in the production build .
To opt into production profiling, React provides a special production build with profiling enabled.
Read more about how to use this build at fb.me/react-profiling
A
Profiler
can be added anywhere in a React tree to measure the cost of rendering that part of the tree.
It requires two props: an
id
(string) and an
onRender
callback (function) which React calls any time a component within the tree “commits” an update.
For example, to profile a
Navigation
component and its descendants:
render(
<App>
<Profiler id="Navigation" onRender={callback}> <Navigation {...props} />
</Profiler>
<Main {...props} />
</App>
);
Multiple
Profiler
components can be used to measure different parts of an application:
render(
<App>
<Profiler id="Navigation" onRender={callback}> <Navigation {...props} />
</Profiler>
<Profiler id="Main" onRender={callback}> <Main {...props} />
</Profiler>
</App>
);
Profiler
components can also be nested to measure different components within the same subtree:
render(
<App>
<Profiler id="Panel" onRender={callback}> <Panel {...props}>
<Profiler id="Content" onRender={callback}> <Content {...props} />
</Profiler>
<Profiler id="PreviewPane" onRender={callback}> <PreviewPane {...props} />
</Profiler>
</Panel>
</Profiler>
</App>
);
Note
Although
Profiler
is a light-weight component, it should be used only when necessary; each use adds some CPU and memory overhead to an application.
onRender
Callback
The
Profiler
requires an
onRender
function as a prop.
React calls this function any time a component within the profiled tree “commits” an update.
It receives parameters describing what was rendered and how long it took.
function onRenderCallback(
id, // the "id" prop of the Profiler tree that has just committed
phase, // either "mount" (if the tree just mounted) or "update" (if it re-rendered)
actualDuration, // time spent rendering the committed update
baseDuration, // estimated time to render the entire subtree without memoization
startTime, // when React began rendering this update
commitTime, // when React committed this update
interactions // the Set of interactions belonging to this update
) {
// Aggregate or log render timings...
}
Let’s take a closer look at each of the props:
id: string
-
id
prop of the
Profiler
tree that has just committed.
phase: "mount" | "update"
-
actualDuration: number
-
Profiler
and its descendants for the current update.
React.memo
,
useMemo
,
shouldComponentUpdate
).
baseDuration: number
-
render
time for each individual component within the
Profiler
tree.
startTime: number
-
commitTime: number
-
interactions: Set
-
render
or
setState
were called).
Note
Interactions can be used to identify the cause of an update, although the API for tracing them is still experimental.
Learn more about it at fb.me/react-interaction-tracing
Normally you would define a React component as a plain JavaScript class:
class Greeting extends React.Component {
render() {
return <h1>Hello, {this.props.name}</h1>;
}
}
If you don’t use ES6 yet, you may use the
create-react-class
module instead:
var createReactClass = require('create-react-class');
var Greeting = createReactClass({
render: function() {
return <h1>Hello, {this.props.name}</h1>;
}
});
The API of ES6 classes is similar to
createReactClass()
with a few exceptions.
With functions and ES6 classes
defaultProps
is defined as a property on the component itself:
class Greeting extends React.Component {
// ...
}
Greeting.defaultProps = {
name: 'Mary'
};
With
createReactClass()
, you need to define
getDefaultProps()
as a function on the passed object:
var Greeting = createReactClass({
getDefaultProps: function() {
return {
name: 'Mary'
};
},
// ...
});
In ES6 classes, you can define the initial state by assigning
this.state
in the constructor:
class Counter extends React.Component {
constructor(props) {
super(props);
this.state = {count: props.initialCount};
}
// ...
}
With
createReactClass()
, you have to provide a separate
getInitialState
method that returns the initial state:
var Counter = createReactClass({
getInitialState: function() {
return {count: this.props.initialCount};
},
// ...
});
In React components declared as ES6 classes, methods follow the same semantics as regular ES6 classes. This means that they don’t automatically bind
this
to the instance. You’ll have to explicitly use
.bind(this)
in the constructor:
class SayHello extends React.Component {
constructor(props) {
super(props);
this.state = {message: 'Hello!'};
// This line is important!
this.handleClick = this.handleClick.bind(this);
}
handleClick() {
alert(this.state.message);
}
render() {
// Because `this.handleClick` is bound, we can use it as an event handler.
return (
<button onClick={this.handleClick}>
Say hello
</button>
);
}
}
With
createReactClass()
, this is not necessary because it binds all methods:
var SayHello = createReactClass({
getInitialState: function() {
return {message: 'Hello!'};
},
handleClick: function() {
alert(this.state.message);
},
render: function() {
return (
<button onClick={this.handleClick}>
Say hello
</button>
);
}
});
This means writing ES6 classes comes with a little more boilerplate code for event handlers, but the upside is slightly better performance in large applications.
If the boilerplate code is too unattractive to you, you may use ES2022 Class Properties syntax:
class SayHello extends React.Component {
constructor(props) {
super(props);
this.state = {message: 'Hello!'};
}
// Using an arrow here binds the method:
handleClick = () => {
alert(this.state.message);
};
render() {
return (
<button onClick={this.handleClick}>
Say hello
</button>
);
}
}
You also have a few other options:
onClick={(e) => this.handleClick(e)}
.
createReactClass
.
Note:
ES6 launched without any mixin support. Therefore, there is no support for mixins when you use React with ES6 classes.
We also found numerous issues in codebases using mixins, and don’t recommend using them in the new code.
This section exists only for the reference.
Sometimes very different components may share some common functionality. These are sometimes called cross-cutting concerns.
createReactClass
lets you use a legacy
mixins
system for that.
One common use case is a component wanting to update itself on a time interval. It’s easy to use
setInterval()
, but it’s important to cancel your interval when you don’t need it anymore to save memory. React provides lifecycle methods that let you know when a component is about to be created or destroyed. Let’s create a simple mixin that uses these methods to provide an easy
setInterval()
function that will automatically get cleaned up when your component is destroyed.
var SetIntervalMixin = {
componentWillMount: function() {
this.intervals = [];
},
setInterval: function() {
this.intervals.push(setInterval.apply(null, arguments));
},
componentWillUnmount: function() {
this.intervals.forEach(clearInterval);
}
};
var createReactClass = require('create-react-class');
var TickTock = createReactClass({
mixins: [SetIntervalMixin], // Use the mixin
getInitialState: function() {
return {seconds: 0};
},
componentDidMount: function() {
this.setInterval(this.tick, 1000); // Call a method on the mixin
},
tick: function() {
this.setState({seconds: this.state.seconds + 1});
},
render: function() {
return (
<p>
React has been running for {this.state.seconds} seconds.
</p>
);
}
});
const root = ReactDOM.createRoot(document.getElementById('example'));
root.render(<TickTock />);
If a component is using multiple mixins and several mixins define the same lifecycle method (i.e. several mixins want to do some cleanup when the component is destroyed), all of the lifecycle methods are guaranteed to be called. Methods defined on mixins run in the order mixins were listed, followed by a method call on the component.
JSX is not a requirement for using React. Using React without JSX is especially convenient when you don’t want to set up compilation in your build environment.
Each JSX element is just syntactic sugar for calling
React.createElement(component, props, ...children)
. So, anything you can do with JSX can also be done with just plain JavaScript.
For example, this code written with JSX:
class Hello extends React.Component {
render() {
return <div>Hello {this.props.toWhat}</div>;
}
}
const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<Hello toWhat="World" />);
can be compiled to this code that does not use JSX:
class Hello extends React.Component {
render() {
return React.createElement('div', null, `Hello ${this.props.toWhat}`);
}
}
const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(React.createElement(Hello, {toWhat: 'World'}, null));
If you’re curious to see more examples of how JSX is converted to JavaScript, you can try out the online Babel compiler.
The component can either be provided as a string, as a subclass of
React.Component
, or a plain function.
If you get tired of typing
React.createElement
so much, one common pattern is to assign a shorthand:
const e = React.createElement;
const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(e('div', null, 'Hello World'));
If you use this shorthand form for
React.createElement
, it can be almost as convenient to use React without JSX.
Alternatively, you can refer to community projects such as
react-hyperscript
and
hyperscript-helpers
which offer a terser syntax.