This is one stop global knowledge base where you can learn about all the products, solutions and support features.
Use an integrated toolchain for the best user and developer experience.
This page describes a few popular React toolchains which help with tasks like:
The toolchains recommended on this page don’t require configuration to get started .
If you don’t experience the problems described above or don’t feel comfortable using JavaScript tools yet, consider adding React as a plain
<script>
tag on an HTML page, optionally with JSX.
This is also the easiest way to integrate React into an existing website. You can always add a larger toolchain if you find it helpful!
The React team primarily recommends these solutions:
Create React App is a comfortable environment for learning React , and is the best way to start building a new single-page application in React.
It sets up your development environment so that you can use the latest JavaScript features, provides a nice developer experience, and optimizes your app for production. You’ll need to have Node >= 14.0.0 and npm >= 5.6 on your machine. To create a project, run:
npx create-react-app my-app
cd my-app
npm start
Note
npx
on the first line is not a typo — it’s a package runner tool that comes with npm 5.2+.
Create React App doesn’t handle backend logic or databases; it just creates a frontend build pipeline, so you can use it with any backend you want. Under the hood, it uses Babel and webpack, but you don’t need to know anything about them.
When you’re ready to deploy to production, running
npm run build
will create an optimized build of your app in the
build
folder. You can learn more about Create React App from its README and the User Guide.
Next.js is a popular and lightweight framework for static and server‑rendered applications built with React. It includes styling and routing solutions out of the box, and assumes that you’re using Node.js as the server environment.
Learn Next.js from its official guide.
Gatsby is the best way to create static websites with React. It lets you use React components, but outputs pre-rendered HTML and CSS to guarantee the fastest load time.
Learn Gatsby from its official guide and a gallery of starter kits.
The following toolchains offer more flexibility and choice. We recommend them to more experienced users:
A JavaScript build toolchain typically consists of:
If you prefer to set up your own JavaScript toolchain from scratch, check out this guide that re-creates some of the Create React App functionality.
Don’t forget to ensure your custom toolchain is correctly set up for production.
Both React and ReactDOM are available over a CDN.
<script crossorigin src="https://unpkg.com/react@18/umd/react.development.js"></script>
<script crossorigin src="https://unpkg.com/react-dom@18/umd/react-dom.development.js"></script>
The versions above are only meant for development, and are not suitable for production. Minified and optimized production versions of React are available at:
<script crossorigin src="https://unpkg.com/react@18/umd/react.production.min.js"></script>
<script crossorigin src="https://unpkg.com/react-dom@18/umd/react-dom.production.min.js"></script>
To load a specific version of
react
and
react-dom
, replace
18
with the version number.
crossorigin
Attribute?
If you serve React from a CDN, we recommend to keep the
crossorigin
attribute set:
<script crossorigin src="..."></script>
We also recommend to verify that the CDN you are using sets the
Access-Control-Allow-Origin: *
HTTP header:
This enables a better error handling experience in React 16 and later.
React relies on a thriving open source community to file bug reports, open pull requests, and submit RFCs. To encourage feedback we sometimes share special builds of React that include unreleased features.
This document will be most relevant to developers who work on frameworks, libraries, or developer tooling. Developers who use React primarily to build user-facing applications should not need to worry about our prerelease channels.
Each of React’s release channels is designed for a distinct use case:
All releases are published to npm, but only Latest uses semantic versioning. Prereleases (those in the Next and Experimental channels) have versions generated from a hash of their contents and the commit date, e.g.
0.0.0-68053d940-20210623
for Next and
0.0.0-experimental-68053d940-20210623
for Experimental.
The only officially supported release channel for user-facing applications is Latest . Next and Experimental releases are provided for testing purposes only, and we provide no guarantees that behavior won’t change between releases. They do not follow the semver protocol that we use for releases from Latest.
By publishing prereleases to the same registry that we use for stable releases, we are able to take advantage of the many tools that support the npm workflow, like unpkg and CodeSandbox.
Latest is the channel used for stable React releases. It corresponds to the
latest
tag on npm. It is the recommended channel for all React apps that are shipped to real users.
If you’re not sure which channel you should use, it’s Latest. If you’re a React developer, this is what you’re already using.
You can expect updates to Latest to be extremely stable. Versions follow the semantic versioning scheme. Learn more about our commitment to stability and incremental migration in our versioning policy.
The Next channel is a prerelease channel that tracks the main branch of the React repository. We use prereleases in the Next channel as release candidates for the Latest channel. You can think of Next as a superset of Latest that is updated more frequently.
The degree of change between the most recent Next release and the most recent Latest release is approximately the same as you would find between two minor semver releases. However, the Next channel does not conform to semantic versioning. You should expect occasional breaking changes between successive releases in the Next channel.
Do not use prereleases in user-facing applications.
Releases in Next are published with the
next
tag on npm. Versions are generated from a hash of the build’s contents and the commit date, e.g.
0.0.0-68053d940-20210623
.
The Next channel is designed to support integration testing between React and other projects.
All changes to React go through extensive internal testing before they are released to the public. However, there are a myriad of environments and configurations used throughout the React ecosystem, and it’s not possible for us to test against every single one.
If you’re the author of a third party React framework, library, developer tool, or similar infrastructure-type project, you can help us keep React stable for your users and the entire React community by periodically running your test suite against the most recent changes. If you’re interested, follow these steps:
In the cron job, update your React packages to the most recent React release in the Next channel, using
next
tag on npm. Using the npm cli:
npm update react@next react-dom@next
Or yarn:
yarn upgrade react@next react-dom@next
A project that uses this workflow is Next.js. (No pun intended! Seriously!) You can refer to their CircleCI configuration as an example.
Like Next, the Experimental channel is a prerelease channel that tracks the main branch of the React repository. Unlike Next, Experimental releases include additional features and APIs that are not ready for wider release.
Usually, an update to Next is accompanied by a corresponding update to Experimental. They are based on the same source revision, but are built using a different set of feature flags.
Experimental releases may be significantly different than releases to Next and Latest. Do not use Experimental releases in user-facing applications. You should expect frequent breaking changes between releases in the Experimental channel.
Releases in Experimental are published with the
experimental
tag on npm. Versions are generated from a hash of the build’s contents and the commit date, e.g.
0.0.0-experimental-68053d940-20210623
.
Experimental features are ones that are not ready to be released to the wider public, and may change drastically before they are finalized. Some experiments may never be finalized — the reason we have experiments is to test the viability of proposed changes.
For example, if the Experimental channel had existed when we announced Hooks, we would have released Hooks to the Experimental channel weeks before they were available in Latest.
You may find it valuable to run integration tests against Experimental. This is up to you. However, be advised that Experimental is even less stable than Next. We do not guarantee any stability between Experimental releases.
Experimental features may or may not be documented. Usually, experiments aren’t documented until they are close to shipping in Next or Latest.
If a feature is not documented, they may be accompanied by an RFC.
We will post to the React blog when we’re ready to announce new experiments, but that doesn’t mean we will publicize every experiment.
You can always refer to our public GitHub repository’s history for a comprehensive list of changes.
The smallest React example looks like this:
const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<h1>Hello, world!</h1>);
It displays a heading saying “Hello, world!” on the page.
Click the link above to open an online editor. Feel free to make some changes, and see how they affect the output. Most pages in this guide will have editable examples like this one.
In this guide, we will examine the building blocks of React apps: elements and components. Once you master them, you can create complex apps from small reusable pieces.
Tip
This guide is designed for people who prefer learning concepts step by step . If you prefer to learn by doing, check out our practical tutorial. You might find this guide and the tutorial complementary to each other.
This is the first chapter in a step-by-step guide about main React concepts. You can find a list of all its chapters in the navigation sidebar. If you’re reading this from a mobile device, you can access the navigation by pressing the button in the bottom right corner of your screen.
Every chapter in this guide builds on the knowledge introduced in earlier chapters. You can learn most of React by reading the “Main Concepts” guide chapters in the order they appear in the sidebar. For example, “Introducing JSX” is the next chapter after this one.
React is a JavaScript library, and so we’ll assume you have a basic understanding of the JavaScript language. If you don’t feel very confident, we recommend going through a JavaScript tutorial to check your knowledge level and enable you to follow along this guide without getting lost. It might take you between 30 minutes and an hour, but as a result you won’t have to feel like you’re learning both React and JavaScript at the same time.
Note
This guide occasionally uses some newer JavaScript syntax in the examples. If you haven’t worked with JavaScript in the last few years, these three points should get you most of the way.
Keep scrolling down, and you’ll find the link to the next chapter of this guide right before the website footer.
Consider this variable declaration:
const element = <h1>Hello, world!</h1>;
This funny tag syntax is neither a string nor HTML.
It is called JSX, and it is a syntax extension to JavaScript. We recommend using it with React to describe what the UI should look like. JSX may remind you of a template language, but it comes with the full power of JavaScript.
JSX produces React “elements”. We will explore rendering them to the DOM in the next section. Below, you can find the basics of JSX necessary to get you started.
React embraces the fact that rendering logic is inherently coupled with other UI logic: how events are handled, how the state changes over time, and how the data is prepared for display.
Instead of artificially separating technologies by putting markup and logic in separate files, React separates concerns with loosely coupled units called “components” that contain both. We will come back to components in a further section, but if you’re not yet comfortable putting markup in JS, this talk might convince you otherwise.
React doesn’t require using JSX, but most people find it helpful as a visual aid when working with UI inside the JavaScript code. It also allows React to show more useful error and warning messages.
With that out of the way, let’s get started!
In the example below, we declare a variable called
name
and then use it inside JSX by wrapping it in curly braces:
const name = 'Josh Perez';const element = <h1>Hello, {name}</h1>;
You can put any valid JavaScript expression inside the curly braces in JSX. For example,
2 + 2
,
user.firstName
, or
formatName(user)
are all valid JavaScript expressions.
In the example below, we embed the result of calling a JavaScript function,
formatName(user)
, into an
<h1>
element.
function formatName(user) {
return user.firstName + ' ' + user.lastName;
}
const user = {
firstName: 'Harper',
lastName: 'Perez'
};
const element = (
<h1>
Hello, {formatName(user)}! </h1>
);
Try it on CodePen
We split JSX over multiple lines for readability. While it isn’t required, when doing this, we also recommend wrapping it in parentheses to avoid the pitfalls of automatic semicolon insertion.
After compilation, JSX expressions become regular JavaScript function calls and evaluate to JavaScript objects.
This means that you can use JSX inside of
if
statements and
for
loops, assign it to variables, accept it as arguments, and return it from functions:
function getGreeting(user) {
if (user) {
return <h1>Hello, {formatName(user)}!</h1>; }
return <h1>Hello, Stranger.</h1>;}
You may use quotes to specify string literals as attributes:
const element = <a href="https://www.reactjs.org"> link </a>;
You may also use curly braces to embed a JavaScript expression in an attribute:
const element = <img src={user.avatarUrl}></img>;
Don’t put quotes around curly braces when embedding a JavaScript expression in an attribute. You should either use quotes (for string values) or curly braces (for expressions), but not both in the same attribute.
Warning:
Since JSX is closer to JavaScript than to HTML, React DOM uses
camelCase
property naming convention instead of HTML attribute names.
For example,
class
becomesclassName
in JSX, andtabindex
becomestabIndex
.
If a tag is empty, you may close it immediately with
/>
, like XML:
const element = <img src={user.avatarUrl} />;
JSX tags may contain children:
const element = (
<div>
<h1>Hello!</h1>
<h2>Good to see you here.</h2>
</div>
);
It is safe to embed user input in JSX:
const title = response.potentiallyMaliciousInput;
// This is safe:
const element = <h1>{title}</h1>;
By default, React DOM escapes any values embedded in JSX before rendering them. Thus it ensures that you can never inject anything that’s not explicitly written in your application. Everything is converted to a string before being rendered. This helps prevent XSS (cross-site-scripting) attacks.
Babel compiles JSX down to
React.createElement()
calls.
These two examples are identical:
const element = (
<h1 className="greeting">
Hello, world!
</h1>
);
const element = React.createElement(
'h1',
{className: 'greeting'},
'Hello, world!'
);
React.createElement()
performs a few checks to help you write bug-free code but essentially it creates an object like this:
// Note: this structure is simplified
const element = {
type: 'h1',
props: {
className: 'greeting',
children: 'Hello, world!'
}
};
These objects are called “React elements”. You can think of them as descriptions of what you want to see on the screen. React reads these objects and uses them to construct the DOM and keep it up to date.
We will explore rendering React elements to the DOM in the next section.
Tip:
We recommend using the “Babel” language definition for your editor of choice so that both ES6 and JSX code is properly highlighted.
Elements are the smallest building blocks of React apps.
An element describes what you want to see on the screen:
const element = <h1>Hello, world</h1>;
Unlike browser DOM elements, React elements are plain objects, and are cheap to create. React DOM takes care of updating the DOM to match the React elements.
Note:
One might confuse elements with a more widely known concept of “components”. We will introduce components in the next section. Elements are what components are “made of”, and we encourage you to read this section before jumping ahead.
Let’s say there is a
<div>
somewhere in your HTML file:
<div id="root"></div>
We call this a “root” DOM node because everything inside it will be managed by React DOM.
Applications built with just React usually have a single root DOM node. If you are integrating React into an existing app, you may have as many isolated root DOM nodes as you like.
To render a React element, first pass the DOM element to
ReactDOM.createRoot()
, then pass the React element to
root.render()
:
const root = ReactDOM.createRoot(
document.getElementById('root')
);
const element = <h1>Hello, world</h1>;
root.render(element);
Try it on CodePen
It displays “Hello, world” on the page.
React elements are immutable. Once you create an element, you can’t change its children or attributes. An element is like a single frame in a movie: it represents the UI at a certain point in time.
With our knowledge so far, the only way to update the UI is to create a new element, and pass it to
root.render()
.
Consider this ticking clock example:
const root = ReactDOM.createRoot(
document.getElementById('root')
);
function tick() {
const element = (
<div>
<h1>Hello, world!</h1>
<h2>It is {new Date().toLocaleTimeString()}.</h2>
</div>
);
root.render(element);}
setInterval(tick, 1000);
Try it on CodePen
It calls
root.render()
every second from a
setInterval()
callback.
Note:
In practice, most React apps only call
root.render()
once. In the next sections we will learn how such code gets encapsulated into stateful components.
We recommend that you don’t skip topics because they build on each other.
React DOM compares the element and its children to the previous one, and only applies the DOM updates necessary to bring the DOM to the desired state.
You can verify by inspecting the last example with the browser tools:
Even though we create an element describing the whole UI tree on every tick, only the text node whose contents have changed gets updated by React DOM.
In our experience, thinking about how the UI should look at any given moment, rather than how to change it over time, eliminates a whole class of bugs.