Welcome to Knowledge Base!

KB at your finger tips

This is one stop global knowledge base where you can learn about all the products, solutions and support features.

Categories
All

DevOps-GitLab

Using the GitLab-Exporter chart | GitLab






  • Requirements
  • Configuration
  • Installation command line options

  • Chart configuration examples

    • image.pullSecrets
    • extraEnv
    • extraEnvFrom
    • annotations
  • Global settings

  • Chart settings

    • metrics.enabled

Using the GitLab-Exporter chart

The gitlab-exporter sub-chart provides Prometheus metrics for GitLab
application-specific data. It talks to PostgreSQL directly to perform
queries to retrieve data for CI builds, pull mirrors, etc. In addition,
it uses the Sidekiq API, which talks to Redis to gather different
metrics around the state of the Sidekiq queues (e.g. number of jobs).

Requirements

This chart depends on Redis and PostgreSQL services, either as part of
the complete GitLab chart or provided as external services reachable
from the Kubernetes cluster on which this chart is deployed.

Configuration

The gitlab-exporter chart is configured as follows:
Global settings and Chart settings.

Installation command line options

The table below contains all the possible chart configurations that can be supplied
to the helm install command using the --set flags.










































Parameter Default Description
annotations Pod annotations
common.labels {} Supplemental labels that are applied to all objects created by this chart.
podLabels Supplemental Pod labels. Will not be used for selectors.
common.labels Supplemental labels that are applied to all objects created by this chart.
deployment.strategy {} Allows one to configure the update strategy utilized by the deployment
enabled true GitLab Exporter enabled flag
extraContainers List of extra containers to include
extraInitContainers List of extra init containers to include
extraVolumeMounts List of extra volumes mounts to do
extraVolumes List of extra volumes to create
extraEnv List of extra environment variables to expose
extraEnvFrom List of extra environment variables from other data sources to expose
image.pullPolicy IfNotPresent GitLab image pull policy
image.pullSecrets Secrets for the image repository
image.repository registry.gitlab.com/gitlab-org/build/cng/gitlab-exporter GitLab Exporter image repository
image.tag image tag
init.image.repository initContainer image
init.image.tag initContainer image tag
metrics.enabled true If a metrics endpoint should be made available for scraping
metrics.port 9168 Metrics endpoint port
metrics.path /metrics Metrics endpoint path
metrics.serviceMonitor.enabled false If a ServiceMonitor should be created to enable Prometheus Operator to manage the metrics scraping, note that enabling this removes the prometheus.io scrape annotations
metrics.serviceMonitor.additionalLabels {} Additional labels to add to the ServiceMonitor
metrics.serviceMonitor.endpointConfig {} Additional endpoint configuration for the ServiceMonitor
metrics.annotations
DEPRECATED Set explicit metrics annotations. Replaced by template content.
priorityClassName
Priority class assigned to pods.
resources.requests.cpu 75m GitLab Exporter minimum CPU
resources.requests.memory 100M GitLab Exporter minimum memory
serviceLabels {} Supplemental service labels
service.externalPort 9168 GitLab Exporter exposed port
service.internalPort 9168 GitLab Exporter internal port
service.name gitlab-exporter GitLab Exporter service name
service.type ClusterIP GitLab Exporter service type
securityContext.fsGroup 1000 Group ID under which the pod should be started
securityContext.runAsUser 1000 User ID under which the pod should be started
tolerations [] Toleration labels for pod assignment
psql.port Set PostgreSQL server port. Takes precedence over global.psql.port

Chart configuration examples

image.pullSecrets

extraEnv

extraEnv allows you to expose additional environment variables in all containers in the pods.

Below is an example use of extraEnv :

extraEnv:
SOME_KEY: some_value
SOME_OTHER_KEY: some_other_value

When the container is started, you can confirm that the environment variables are exposed:

env | grep SOME
SOME_KEY=some_value
SOME_OTHER_KEY=some_other_value

extraEnvFrom

extraEnvFrom allows you to expose additional environment variables from other data sources in all containers in the pods.

Below is an example use of extraEnvFrom :

extraEnvFrom:
MY_NODE_NAME:
fieldRef:
fieldPath: spec.nodeName
MY_CPU_REQUEST:
resourceFieldRef:
containerName: test-container
resource: requests.cpu
SECRET_THING:
secretKeyRef:
name: special-secret
key: special_token
# optional: boolean
CONFIG_STRING:
configMapKeyRef:
name: useful-config
key: some-string
# optional: boolean

pullSecrets allows you to authenticate to a private registry to pull images for a pod.

Additional details about private registries and their authentication methods can be
found in the Kubernetes documentation.

Below is an example use of pullSecrets :

image:
repository: my.image.repository
pullPolicy: Always
pullSecrets:
- name: my-secret-name
- name: my-secondary-secret-name

annotations

annotations allows you to add annotations to the GitLab Exporter pods. For example:

annotations:
kubernetes.io/example-annotation: annotation-value

Global settings

We share some common global settings among our charts. See the Globals Documentation
for common configuration options, such as GitLab and Registry hostnames.

Chart settings

The following values are used to configure the GitLab Exporter pod.

metrics.enabled

By default, the pod exposes a metrics endpoint at /metrics . When
metrics are enabled, annotations are added to each pod allowing a
Prometheus server to discover and scrape the exposed metrics.


Stay Ahead in Today’s Competitive Market!
Unlock your company’s full potential with a Virtual Delivery Center (VDC). Gain specialized expertise, drive seamless operations, and scale effortlessly for long-term success.

Book A Meeting To Setup A VDCovertime

Using the GitLab-Grafana chart | GitLab






  • Requirements
  • Design Choices
  • Configuration
  • Installation command line options
  • Dashboard Support
  • Datasource support

Using the GitLab-Grafana chart

The gitlab-grafana subchart adapts the grafana/grafana
chart to operate correctly with the same level of configuration as the Omnibus
GitLab install. In addition, the installation of Grafana allows additional
dashboards to be installed by the end user and be incorporated with the
GitLab supplied dashboards.

Requirements

This chart depends on the grafana/grafana chart which is usually installed
by the GitLab meta chart. In addition, Kubernetes Ingress support is
needed to properly route the Grafana requests using the /-/grafana path.

Design Choices

Because of Helm limitations it is not possible to configure the Grafana
chart with knowledge of a dynamic name for the initial password Secret.
As a result a statically named Secret is created to contain the initial
password. This Secret is named gitlab-grafana-initial-password .

The same issue exists for the ConfigMap that contains the script that
is used to inject the initial password into the Grafana container. That
ConfigMap is named gitlab-grafana-import-secret .

Both the initial password Secret and the import script ConfigMap are
mounted into the Grafana container (Script in /tmp/initial and Configmap in /tmp/scripts ).
The container command line is augmented to use both
of these objects to securely expose the initial password to the
Grafana server. Modification of the container command line will
generally prevent the initial password from being injected into the
Grafana server environment.

Configuration

There are no required settings, it should work out of the box if you deploy
all of the charts together. The administrator credentials are created by
the shared-secrets Job and the administrator username is set to root .
Password for Grafana’s root user can be extracted by the following command:

kubectl get secret gitlab-grafana-initial-password -ojsonpath='{.data.password}' | base64 --decode ; echo

Installation command line options









Parameter Default Description
common.labels {} Supplemental labels that are applied to all objects created by this chart.
ingress.apiVersion Value to use in the apiVersion field.
ingress.tls {} Hash of Ingress TLS settings if GitLab cert manager is not installed
ingress.annotations {} Additional annotations to add to Grafana Ingress resource

Dashboard Support

Grafana dashboards are automatically discovered from the ConfigMaps in
the deployed namespace. If a ConfigMap has been created with the
gitlab_grafana_dashboard label set to true , then the JSON encoded
dashboard in the ConfigMap will be imported into Grafana. This import happens
once (when Grafana is restarted) and any changes to the dashboard will not be
written back to the ConfigMap.

There are currently no dashboards created when the chart is installed. Any
user created dashboards can be imported by creating a ConfigMap using the
gitlab_grafana_dashboard label and managing the ConfigMap themselves.

Datasource support

Datasources may be created in the same manner as the dashboards by adding
the gitlab_grafana_datasource label. This chart will add a ConfigMap
to direct Grafana to use the embedded Prometheus metrics.

Read article

Using the GitLab Pages chart | GitLab






  • Requirements
  • Configuration
  • Global Settings

  • Chart settings

    • General settings
    • Pages specific settings
    • Configuring the ingress

  • Chart configuration examples

    • extraVolumes
    • extraVolumeMounts
    • Configuring the networkpolicy
    • Example Network Policy
    • TLS access to GitLab Pages

Using the GitLab Pages chart

The gitlab-pages subchart provides a daemon for serving static websites from
GitLab projects.

Requirements

This chart depends on access to the Workhorse services, either as part of the
complete GitLab chart or provided as an external service reachable from the Kubernetes
cluster this chart is deployed onto.

Configuration

The gitlab-pages chart is configured as follows:
Global settings and Chart settings.

Global Settings

We share some common global settings among our charts. See the
Globals Documentation for details.

Chart settings

The tables in following two sections contains all the possible chart
configurations that can be supplied to the helm install command using the
--set flags.

General settings





















































Parameter Default Description
annotations Pod annotations
common.labels {} Supplemental labels that are applied to all objects created by this chart.
deployment.strategy {} Allows one to configure the update strategy used by the deployment. When not provided, the cluster default is used.
extraEnv List of extra environment variables to expose
extraEnvFrom List of extra environment variables from other data source to expose
hpa.behavior {scaleDown: {stabilizationWindowSeconds: 300 }} Behavior contains the specifications for up- and downscaling behavior (requires autoscaling/v2beta2 or higher)
hpa.customMetrics [] Custom metrics contains the specifications for which to use to calculate the desired replica count (overrides the default use of Average CPU Utilization configured in targetAverageUtilization )
hpa.cpu.targetType AverageValue Set the autoscaling CPU target type, must be either Utilization or AverageValue
hpa.cpu.targetAverageValue 100m Set the autoscaling CPU target value
hpa.cpu.targetAverageUtilization Set the autoscaling CPU target utilization
hpa.memory.targetType Set the autoscaling memory target type, must be either Utilization or AverageValue
hpa.memory.targetAverageValue Set the autoscaling memory target value
hpa.memory.targetAverageUtilization Set the autoscaling memory target utilization
hpa.minReplicas 1 Minimum number of replicas
hpa.maxReplicas 10 Maximum number of replicas
hpa.targetAverageValue
DEPRECATED Set the autoscaling CPU target value
image.pullPolicy IfNotPresent GitLab image pull policy
image.pullSecrets Secrets for the image repository
image.repository registry.gitlab.com/gitlab-org/build/cng/gitlab-exporter GitLab Exporter image repository
image.tag image tag
init.image.repository initContainer image
init.image.tag initContainer image tag
metrics.enabled true If a metrics endpoint should be made available for scraping
metrics.port 9235 Metrics endpoint port
metrics.path /metrics Metrics endpoint path
metrics.serviceMonitor.enabled false If a ServiceMonitor should be created to enable Prometheus Operator to manage the metrics scraping, note that enabling this removes the prometheus.io scrape annotations
metrics.serviceMonitor.additionalLabels {} Additional labels to add to the ServiceMonitor
metrics.serviceMonitor.endpointConfig {} Additional endpoint configuration for the ServiceMonitor
metrics.annotations
DEPRECATED Set explicit metrics annotations. Replaced by template content.
metrics.tls.enabled false TLS enabled for the metrics endpoint
metrics.tls.secretName {Release.Name}-pages-metrics-tls Secret for the metrics endpoint TLS cert and key
podLabels Supplemental Pod labels. Will not be used for selectors.
resources.requests.cpu 75m GitLab Pages minimum CPU
resources.requests.memory 100M GitLab Pages minimum memory
securityContext.fsGroup 1000 Group ID under which the pod should be started
securityContext.runAsUser 1000 User ID under which the pod should be started
service.externalPort 8090 GitLab Pages exposed port
service.internalPort 8090 GitLab Pages internal port
service.name gitlab-pages GitLab Pages service name
service.customDomains.type LoadBalancer Type of service created for handling custom domains
service.customDomains.internalHttpsPort 8091 Port where Pages daemon listens for HTTPS requests
service.customDomains.internalHttpsPort 8091 Port where Pages daemon listens for HTTPS requests
service.customDomains.nodePort.http Node Port to be opened for HTTP connections. Valid only if service.customDomains.type is NodePort
service.customDomains.nodePort.https Node Port to be opened for HTTPS connections. Valid only if service.customDomains.type is NodePort
service.sessionAffinity None Type of the session affinity. Must be either ClientIP or None (this only makes sense for traffic originating from within the cluster)
service.sessionAffinityConfig Session affinity config. If service.sessionAffinity == ClientIP the default session sticky time is 3 hours (10800)
serviceLabels {} Supplemental service labels
tolerations [] Toleration labels for pod assignment

Pages specific settings






















































Parameter Default Description
artifactsServerTimeout 10 Timeout (in seconds) for a proxied request to the artifacts server
artifactsServerUrl API URL to proxy artifact requests to
extraVolumeMounts List of extra volumes mounts to add
extraVolumes List of extra volumes to create
gitlabCache.cleanup int See: Pages Global Settings
gitlabCache.expiry int See: Pages Global Settings
gitlabCache.refresh int See: Pages Global Settings
gitlabClientHttpTimeout GitLab API HTTP client connection timeout in seconds
gitlabClientJwtExpiry JWT Token expiry time in seconds
gitlabRetrieval.interval int See: Pages Global Settings
gitlabRetrieval.retries int See: Pages Global Settings
gitlabRetrieval.timeout int See: Pages Global Settings
gitlabServer GitLab server FQDN
headers [] Specify any additional http headers that should be sent to the client with each response. Multiple headers can be given as an array, header and value as one string, for example ['my-header: myvalue', 'my-other-header: my-other-value']
insecureCiphers false Use default list of cipher suites, may contain insecure ones like 3DES and RC4
internalGitlabServer Internal GitLab server used for API requests
logFormat json Log output format
logVerbose false Verbose logging
maxConnections Limit on the number of concurrent connections to the HTTP, HTTPS or proxy listeners
maxURILength Limit the length of URI, 0 for unlimited.
propagateCorrelationId Reuse existing Correlation-ID from the incoming request header X-Request-ID if present
redirectHttp false Redirect pages from HTTP to HTTPS
sentry.enabled false Enable Sentry reporting
sentry.dsn The address for sending Sentry crash reporting to
sentry.environment The environment for Sentry crash reporting
serverShutdowntimeout 30s GitLab Pages server shutdown timeout in seconds
statusUri The URL path for a status page
tls.minVersion Specifies the minimum SSL/TLS version
tls.maxVersion Specifies the maximum SSL/TLS version
useHTTPProxy false Use this option when GitLab Pages is behind a Reverse Proxy.
useProxyV2 false Force HTTPS request to utilize the PROXYv2 protocol.
zipCache.cleanup int See: Zip Serving and Cache Configuration
zipCache.expiration int See: Zip Serving and Cache Configuration
zipCache.refresh int See: Zip Serving and Cache Configuration
zipOpenTimeout int See: Zip Serving and Cache Configuration
zipHTTPClientTimeout int See: Zip Serving and Cache Configuration
rateLimitSourceIP See: GitLab Pages rate-limits. To enable rate-limiting use extraEnv=["FF_ENFORCE_IP_RATE_LIMITS=true"]
rateLimitSourceIPBurst See: GitLab Pages rate-limits
rateLimitDomain See: GitLab Pages rate-limits. To enable rate-limiting use extraEnv=["FF_ENFORCE_DOMAIN_RATE_LIMITS=true"]
rateLimitDomainBurst See: GitLab Pages rate-limits
rateLimitTLSSourceIP See: GitLab Pages rate-limits. To enable rate-limiting use extraEnv=["FF_ENFORCE_IP_TLS_RATE_LIMITS=true"]
rateLimitTLSSourceIPBurst See: GitLab Pages rate-limits
rateLimitTLSDomain See: GitLab Pages rate-limits. To enable rate-limiting use extraEnv=["FF_ENFORCE_DOMAIN_TLS_RATE_LIMITS=true"]
rateLimitTLSDomainBurst See: GitLab Pages rate-limits
serverReadTimeout 5s See: GitLab Pages global settings
serverReadHeaderTimeout 1s See: GitLab Pages global settings
serverWriteTimeout 5m See: GitLab Pages global settings
serverKeepAlive 15s See: GitLab Pages global settings
authCookieSessionTimeout 10m See: GitLab Pages global settings

Configuring the ingress

This section controls the GitLab Pages Ingress.











Name Type Default Description
apiVersion String Value to use in the apiVersion field.
annotations String This field is an exact match to the standard annotations for Kubernetes Ingress.
configureCertmanager Boolean false Toggles Ingress annotation cert-manager.io/issuer . The acquisition of a TLS certificate for GitLab Pages via cert-manager is disabled because a wildcard certificate acquisition requires a cert-manager Issuer with a DNS01 solver, and the Issuer deployed by this chart only provides a HTTP01 solver. For more information see the TLS requirement for GitLab Pages.
enabled Boolean Setting that controls whether to create Ingress objects for services that support them. When not set, the global.ingress.enabled setting is used.
tls.enabled Boolean When set to false , you disable TLS for the Pages subchart. This is mainly useful for cases in which you cannot use TLS termination at ingress-level , like when you have a TLS-terminating proxy before the Ingress Controller.
tls.secretName String The name of the Kubernetes TLS Secret that contains a valid certificate and key for the pages URL. When not set, the global.ingress.tls.secretName is used instead. Defaults to not being set.

Chart configuration examples

extraVolumes

extraVolumes allows you to configure extra volumes chart-wide.

Below is an example use of extraVolumes :

extraVolumes: |
- name: example-volume
persistentVolumeClaim:
claimName: example-pvc

extraVolumeMounts

extraVolumeMounts allows you to configure extra volumeMounts on all containers chart-wide.

Below is an example use of extraVolumeMounts :

extraVolumeMounts: |
- name: example-volume
mountPath: /etc/example

Configuring the networkpolicy

This section controls the
NetworkPolicy.
This configuration is optional and is used to limit Egress and Ingress of the
Pods to specific endpoints.










Name Type Default Description
enabled Boolean false This setting enables the NetworkPolicy
ingress.enabled Boolean false When set to true , the Ingress network policy will be activated. This will block all Ingress connections unless rules are specified.
ingress.rules Array [] Rules for the Ingress policy, for details see https://kubernetes.io/docs/concepts/services-networking/network-policies/#the-networkpolicy-resource and the example below
egress.enabled Boolean false When set to true , the Egress network policy will be activated. This will block all egress connections unless rules are specified.
egress.rules Array [] Rules for the egress policy, these for details see https://kubernetes.io/docs/concepts/services-networking/network-policies/#the-networkpolicy-resource and the example below

Example Network Policy

The gitlab-pages service requires Ingress connections for port 80 and 443 and
Egress connections to various to default workhorse port 8181. This examples adds
the following network policy:


  • All Ingress requests from the network on TCP 0.0.0.0/0 port 80 and 443 are allowed
  • All Egress requests to the network on UDP 10.0.0.0/8 port 53 are allowed for DNS
  • All Egress requests to the network on TCP 10.0.0.0/8 port 8181 are allowed for Workhorse

Note the example provided is only an example and may not be complete

networkpolicy:
enabled: true
ingress:
enabled: true
rules:
- to:
- ipBlock:
cidr: 0.0.0.0/0
ports:
- port: 80
protocol: TCP
- port: 443
protocol: TCP
egress:
enabled: true
rules:
- to:
- ipBlock:
cidr: 10.0.0.0/8
ports:
- port: 8181
protocol: TCP
- port: 53
protocol: UDP

TLS access to GitLab Pages

To have TLS access to the GitLab Pages feature you must:



  1. Create a dedicated wildcard certificate for your GitLab Pages domain in this format:
    *.pages.<yourdomain> .


  2. Create the secret in Kubernetes:


    kubectl create secret tls tls-star-pages-<mysecret> --cert=<path/to/fullchain.pem> --key=<path/to/privkey.pem>

  3. Configure GitLab Pages to use this secret:


    gitlab:
    gitlab-pages:
    ingress:
    tls:
    secretName: tls-star-pages-<mysecret>

  4. Create a DNS entry in your DNS provider with the name *.pages.<yourdomaindomain>
    pointing to your LoadBalancer.

Read article

Using the GitLab Runner chart | GitLab






  • Requirements
  • Configuration
  • Deploying a stand-alone runner

  • Using Docker-in-Docker

    • Security concerns
  • Installation command line options
  • Default runner configuration
  • Chart configuration examples

Using the GitLab Runner chart

The GitLab Runner subchart provides a GitLab Runner for running CI jobs. It is enabled by default and should work out of the box with support for caching using s3 compatible object storage.

Requirements

This chart depends on the shared-secrets Job to populate its registrationToken for automatic registration. If you intend to run this chart as a stand-alone chart with an existing GitLab instance then you will need to manually set the registrationToken in the gitlab-runner secret to be equal to that displayed by the running GitLab instance.

Configuration

There are no required settings, it should work out of the box if you deploy all of the charts together.

Deploying a stand-alone runner

By default we do infer gitlabUrl , automatically generate a registration token, and generate it through the migrations chart. This behavior will not work if you intend to deploy it with a running GitLab instance.

In this case you will need to set gitlabUrl value to be the URL of the running GitLab instance. You will also need to manually create gitlab-runner secret and fill it with the registrationToken provided by the running GitLab.

Using Docker-in-Docker

In order to run Docker-in-Docker, the runner container needs to be privileged to have access to the needed capabilities. To enable it set the privileged value to true . See the upstream documentation in regards to why this is does not default to true .

Security concerns

Privileged containers have extended capabilities, for example they can mount arbitrary files from the host they run on. Make sure to run the container in an isolated environment such that nothing important runs beside it.

Installation command line options

























Parameter Description Default
gitlab-runner.image Runner image gitlab/gitlab-runner:alpine-v10.5.0
gitlab-runner.gitlabUrl URL that the Runner uses to register to GitLab Server GitLab external URL
gitlab-runner.install Install the gitlab-runner chart true
gitlab-runner.imagePullPolicy Image pull policy IfNotPresent
gitlab-runner.init.image.repository
initContainer image
gitlab-runner.init.image.tag
initContainer image tag
gitlab-runner.pullSecrets Secrets for the image repository
gitlab-runner.unregisterRunners Unregister all runners before termination true
gitlab-runner.concurrent Number of concurrent jobs 20
gitlab-runner.checkInterval Polling interval 30s
gitlab-runner.rbac.create Whether to create RBAC service account true
gitlab-runner.rbac.clusterWideAccess Deploy containers of jobs cluster-wide false
gitlab-runner.rbac.serviceAccountName Name of the RBAC service account to create default
gitlab-runner.runners.privileged Run in privileged mode, needed for dind
false
gitlab-runner.runners.cache.secretName Secret to access key and secret key from gitlab-minio
gitlab-runner.runners.config Runner configuration as string See below
gitlab-runner.resources.limits.cpu Runner CPU limit
gitlab-runner.resources.limits.memory Runner memory limit
gitlab-runner.resources.requests.cpu Runner requested CPU
gitlab-runner.resources.requests.memory Runner requested memory

Default runner configuration

The default runner configuration used in the GitLab chart has been customized to use the included MinIO for cache by default. If you are setting the runner config value, you will need to also configure your own cache configuration.

gitlab-runner:
runners:
config: |
[[runners]]
[runners.kubernetes]
image = "ubuntu:18.04"
{{- if .Values.global.minio.enabled }}
[runners.cache]
Type = "s3"
Path = "gitlab-runner"
Shared = true
[runners.cache.s3]
ServerAddress = {{ include "gitlab-runner.cache-tpl.s3ServerAddress" . }}
BucketName = "runner-cache"
BucketLocation = "us-east-1"
Insecure = false
{{ end }}

Chart configuration examples

Runners configuration to use only custom nameservers (exclude any cluster or host nameservers):

gitlab-runner:
runners:
config: |
[[runners]]
[runners.kubernetes]
image = "ubuntu:18.04"
dns_policy = "none"
[runners.kubernetes.dns_config]
nameservers = ["8.8.8.8"]

See the Runner chart additional configuration.

Read article

Using the GitLab Shell chart | GitLab






  • Requirements
  • Design Choices
  • Configuration
  • Installation command line options

  • Chart configuration examples

    • extraEnv
    • extraEnvFrom
    • image.pullSecrets
    • livenessProbe/readinessProbe
    • tolerations
    • annotations

  • External Services

    • Workhorse

  • Chart settings

    • hostKeys.secret
    • authToken
    • LoadBalancer Service
    • Configuring the networkpolicy
    • Example Network Policy

Using the GitLab Shell chart

The gitlab-shell sub-chart provides an SSH server configured for Git SSH access to GitLab.

Requirements

This chart depends on access to the Workhorse services, either as part of the
complete GitLab chart or provided as an external service reachable from the Kubernetes
cluster this chart is deployed onto.

Design Choices

In order to easily support SSH replicas, and avoid using shared storage for the SSH
authorized keys, we are using the SSH AuthorizedKeysCommand
to authenticate against the GitLab authorized keys endpoint. As a result, we don’t persist
or update the AuthorizedKeys file within these pods.

Configuration

The gitlab-shell chart is configured in two parts: external services,
and chart settings. The port exposed through Ingress is configured
with global.shell.port , and defaults to 22 . The Service’s external port is also
controlled by global.shell.port .

Installation command line options













































































Parameter Default Description
annotations Pod annotations
podLabels Supplemental Pod labels. Will not be used for selectors.
common.labels Supplemental labels that are applied to all objects created by this chart.
config.clientAliveInterval 0 Interval between keepalive pings on otherwise idle connections; the default value of 0 disables this ping
config.loginGraceTime 60 Specifies amount of time that the server will disconnect after if the user has not successfully logged in
config.maxStartups.full 100 SSHd refuse probability will increase linearly and all unauthenticated connection attempts would be refused when unauthenticated connections number will reach specified number
config.maxStartups.rate 30 SSHd will refuse connections with specified probability when there would be too many unauthenticated connections (optional)
config.maxStartups.start 10 SSHd will refuse connection attempts with some probability if there are currently more than the specified number of unauthenticated connections (optional)
config.proxyProtocol false Enable PROXY protocol support for the gitlab-sshd daemon
config.proxyPolicy "use" Specify policy for handling PROXY protocol. Value must be one of use, require, ignore, reject
config.proxyHeaderTimeout "500ms" The maximum duration gitlab-sshd will wait before giving up on reading the PROXY protocol header. Must include units: ms , s , or m .
config.ciphers [aes128-gcm@openssh.com, chacha20-poly1305@openssh.com, aes256-gcm@openssh.com, aes128-ctr, aes192-ctr, aes256-ctr] Specify the ciphers allowed.
config.kexAlgorithms [curve25519-sha256, curve25519-sha256@libssh.org, ecdh-sha2-nistp256, ecdh-sha2-nistp384, ecdh-sha2-nistp521, diffie-hellman-group14-sha256, diffie-hellman-group14-sha1] Specifies the available KEX (Key Exchange) algorithms.
config.macs [hmac-sha2-256-etm@openssh.com, hmac-sha2-512-etm@openssh.com, hmac-sha2-256, hmac-sha2-512, hmac-sha1] Specifies the available MAC (message authentication code algorithms.
deployment.livenessProbe.initialDelaySeconds 10 Delay before liveness probe is initiated
deployment.livenessProbe.periodSeconds 10 How often to perform the liveness probe
deployment.livenessProbe.timeoutSeconds 3 When the liveness probe times out
deployment.livenessProbe.successThreshold 1 Minimum consecutive successes for the liveness probe to be considered successful after having failed
deployment.livenessProbe.failureThreshold 3 Minimum consecutive failures for the liveness probe to be considered failed after having succeeded
deployment.readinessProbe.initialDelaySeconds 10 Delay before readiness probe is initiated
deployment.readinessProbe.periodSeconds 5 How often to perform the readiness probe
deployment.readinessProbe.timeoutSeconds 3 When the readiness probe times out
deployment.readinessProbe.successThreshold 1 Minimum consecutive successes for the readiness probe to be considered successful after having failed
deployment.readinessProbe.failureThreshold 2 Minimum consecutive failures for the readiness probe to be considered failed after having succeeded
deployment.strategy {} Allows one to configure the update strategy utilized by the deployment
deployment.terminationGracePeriodSeconds 30 Seconds that Kubernetes will wait for a pod to forcibly exit
enabled true Shell enable flag
extraContainers List of extra containers to include
extraInitContainers List of extra init containers to include
extraVolumeMounts List of extra volumes mounts to do
extraVolumes List of extra volumes to create
extraEnv List of extra environment variables to expose
extraEnvFrom List of extra environment variables from other data sources to expose
hpa.behavior {scaleDown: {stabilizationWindowSeconds: 300 }} Behavior contains the specifications for up- and downscaling behavior (requires autoscaling/v2beta2 or higher)
hpa.customMetrics [] Custom metrics contains the specifications for which to use to calculate the desired replica count (overrides the default use of Average CPU Utilization configured in targetAverageUtilization )
hpa.cpu.targetType AverageValue Set the autoscaling CPU target type, must be either Utilization or AverageValue
hpa.cpu.targetAverageValue 100m Set the autoscaling CPU target value
hpa.cpu.targetAverageUtilization Set the autoscaling CPU target utilization
hpa.memory.targetType Set the autoscaling memory target type, must be either Utilization or AverageValue
hpa.memory.targetAverageValue Set the autoscaling memory target value
hpa.memory.targetAverageUtilization Set the autoscaling memory target utilization
hpa.targetAverageValue
DEPRECATED Set the autoscaling CPU target value
image.pullPolicy IfNotPresent Shell image pull policy
image.pullSecrets Secrets for the image repository
image.repository registry.com/gitlab-org/build/cng/gitlab-shell Shell image repository
image.tag master Shell image tag
init.image.repository initContainer image
init.image.tag initContainer image tag
logging.format text Set to json for JSON-structured logs
logging.sshdLogLevel ERROR Log level for underlying SSH daemon
priorityClassName
Priority class assigned to pods.
replicaCount 1 Shell replicas
serviceLabels {} Supplemental service labels
service.externalTrafficPolicy Cluster Shell service external traffic policy (Cluster or Local)
service.internalPort 2222 Shell internal port
service.nodePort Sets shell nodePort if set
service.name gitlab-shell Shell service name
service.type ClusterIP Shell service type
service.loadBalancerIP IP address to assign to LoadBalancer (if supported)
service.loadBalancerSourceRanges List of IP CIDRs allowed access to LoadBalancer (if supported)
securityContext.fsGroup 1000 Group ID under which the pod should be started
securityContext.runAsUser 1000 User ID under which the pod should be started
sshDaemon openssh Selects which SSH daemon would be run, possible values ( openssh , gitlab-sshd )
tolerations [] Toleration labels for pod assignment
workhorse.serviceName webservice Workhorse service name (by default, Workhorse is a part of the webservice Pods / Service)
metrics.enabled false If a metrics endpoint should be made available for scraping
metrics.port 9122 Metrics endpoint port
metrics.path /metrics Metrics endpoint path
metrics.serviceMonitor.enabled false If a ServiceMonitor should be created to enable Prometheus Operator to manage the metrics scraping, note that enabling this removes the prometheus.io scrape annotations
metrics.serviceMonitor.additionalLabels {} Additional labels to add to the ServiceMonitor
metrics.serviceMonitor.endpointConfig {} Additional endpoint configuration for the ServiceMonitor
metrics.annotations
DEPRECATED Set explicit metrics annotations. Replaced by template content.

Chart configuration examples

extraEnv

extraEnv allows you to expose additional environment variables in all containers in the pods.

Below is an example use of extraEnv :

extraEnv:
SOME_KEY: some_value
SOME_OTHER_KEY: some_other_value

When the container is started, you can confirm that the environment variables are exposed:

env | grep SOME
SOME_KEY=some_value
SOME_OTHER_KEY=some_other_value

extraEnvFrom

extraEnvFrom allows you to expose additional environment variables from other data sources in all containers in the pods.

Below is an example use of extraEnvFrom :

extraEnvFrom:
MY_NODE_NAME:
fieldRef:
fieldPath: spec.nodeName
MY_CPU_REQUEST:
resourceFieldRef:
containerName: test-container
resource: requests.cpu
SECRET_THING:
secretKeyRef:
name: special-secret
key: special_token
# optional: boolean
CONFIG_STRING:
configMapKeyRef:
name: useful-config
key: some-string
# optional: boolean

image.pullSecrets

pullSecrets allows you to authenticate to a private registry to pull images for a pod.

Additional details about private registries and their authentication methods can be
found in the Kubernetes documentation.

Below is an example use of pullSecrets :

image:
repository: my.shell.repository
tag: latest
pullPolicy: Always
pullSecrets:
- name: my-secret-name
- name: my-secondary-secret-name

livenessProbe/readinessProbe

deployment.livenessProbe and deployment.readinessProbe provide a mechanism
to help control the termination of Pods under some scenarios.

Larger repositories benefit from tuning liveness and readiness probe
times to match their typical long-running connections. Set readiness
probe duration shorter than liveness probe duration to minimize
potential interruptions during clone and push operations. Increase
terminationGracePeriodSeconds and give these operations more time before
the scheduler terminates the pod. Consider the example below as a starting
point to tune GitLab Shell pods for increased stability and efficiency
with larger repository workloads.

deployment:
livenessProbe:
initialDelaySeconds: 10
periodSeconds: 20
timeoutSeconds: 3
successThreshold: 1
failureThreshold: 10
readinessProbe:
initialDelaySeconds: 10
periodSeconds: 5
timeoutSeconds: 2
successThreshold: 1
failureThreshold: 3
terminationGracePeriodSeconds: 300

Reference the official Kubernetes Documentation
for additional details regarding this configuration.

tolerations

tolerations allow you schedule pods on tainted worker nodes

Below is an example use of tolerations :

tolerations:
- key: "node_label"
operator: "Equal"
value: "true"
effect: "NoSchedule"
- key: "node_label"
operator: "Equal"
value: "true"
effect: "NoExecute"

annotations

annotations allows you to add annotations to the GitLab Shell pods.

Below is an example use of annotations

annotations:
kubernetes.io/example-annotation: annotation-value

External Services

This chart should be attached the Workhorse service.

Workhorse

workhorse:
host: workhorse.example.com
serviceName: webservice
port: 8181







Name Type Default Description
host String The hostname of the Workhorse server. This can be omitted in lieu of serviceName .
port Integer 8181 The port on which to connect to the Workhorse server.
serviceName String webservice The name of the service which is operating the Workhorse server. By default, Workhorse is a part of the webservice Pods / Service. If this is present, and host is not, the chart will template the hostname of the service (and current .Release.Name ) in place of the host value. This is convenient when using Workhorse as a part of the overall GitLab chart.

Chart settings

The following values are used to configure the GitLab Shell Pods.

hostKeys.secret

The name of the Kubernetes secret to grab the SSH host keys from. The keys in the
secret must start with the key names ssh_host_ in order to be used by GitLab Shell.

authToken

GitLab Shell uses an Auth Token in its communication with Workhorse. Share the token
with GitLab Shell and Workhorse using a shared Secret.

authToken:
secret: gitlab-shell-secret
key: secret






Name Type Default Description
authToken.key String The name of the key in the above secret that contains the auth token.
authToken.secret String The name of the Kubernetes Secret to pull from.

LoadBalancer Service

If the service.type is set to LoadBalancer , you can optionally specify service.loadBalancerIP to create
the LoadBalancer with a user-specified IP (if your cloud provider supports it).

You can also optionally specify a list of service.loadBalancerSourceRanges to restrict
the CIDR ranges that can access the LoadBalancer (if your cloud provider supports it).

Additional information about the LoadBalancer service type can be found in
the Kubernetes documentation

service:
type: LoadBalancer
loadBalancerIP: 1.2.3.4
loadBalancerSourceRanges:
- 5.6.7.8/32
- 10.0.0.0/8

Configuring the networkpolicy

This section controls the
NetworkPolicy.
This configuration is optional and is used to limit Egress and Ingress of the
Pods to specific endpoints.










Name Type Default Description
enabled Boolean false This setting enables the NetworkPolicy
ingress.enabled Boolean false When set to true , the Ingress network policy will be activated. This will block all Ingress connections unless rules are specified.
ingress.rules Array [] Rules for the Ingress policy, for details see https://kubernetes.io/docs/concepts/services-networking/network-policies/#the-networkpolicy-resource and the example below
egress.enabled Boolean false When set to true , the Egress network policy will be activated. This will block all egress connections unless rules are specified.
egress.rules Array [] Rules for the egress policy, these for details see https://kubernetes.io/docs/concepts/services-networking/network-policies/#the-networkpolicy-resource and the example below

Example Network Policy

The gitlab-shell service requires Ingress connections for port 22 and Egress
connections to various to default workhorse port 8181. This examples adds the
following network policy:


  • All Ingress requests from the network on TCP 0.0.0.0/0 port 2222 are allowed
  • All Egress requests to the network on UDP 10.0.0.0/8 port 53 are allowed for DNS
  • All Egress requests to the network on TCP 10.0.0.0/8 port 8181 are allowed for Workhorse
  • All Egress requests to the network on TCP 10.0.0.0/8 port 8075 are allowed for Gitaly

Note the example provided is only an example and may not be complete

networkpolicy:
enabled: true
ingress:
enabled: true
rules:
- from:
- ipBlock:
cidr: 0.0.0.0/0
ports:
- port: 2222
protocol: TCP
egress:
enabled: true
rules:
- to:
- ipBlock:
cidr: 10.0.0.0/8
ports:
- port: 8181
protocol: TCP
- port: 8075
protocol: TCP
- port: 53
protocol: UDP
Read article

GitLab Helm subcharts | GitLab





GitLab Helm subcharts

The GitLab Helm chart is made up of multiple subcharts,
which provide the core GitLab components:


  • Gitaly
  • GitLab Exporter
  • GitLab Grafana
  • GitLab Pages
  • GitLab Runner
  • GitLab Shell
  • GitLab agent server (KAS)
  • Mailroom
  • Migrations
  • Praefect
  • Sidekiq
  • Spamcheck
  • Toolbox
  • Webservice

The parameters for each subchart must be under the gitlab key. For example,
GitLab Shell parameters would be similar to:

gitlab:
gitlab-shell:
...

Use these charts for optional dependencies:


  • MinIO
  • NGINX
  • PostgreSQL
  • Redis
  • Registry

Use these charts as optional additions:


  • Prometheus
  • Grafana

  • Unprivileged GitLab Runner that uses the Kubernetes executor
  • Automatically provisioned SSL from Let’s Encrypt, which uses Jetstack’s cert-manager with certmanager-issuer
Read article